Iloczyn to wynik działania matematycznego zwanego mnożeniem. Mnożenie polega na dodawaniu tej samej liczby do siebie określoną liczbę razy. Na przykład, iloczyn 3 i 4 jest równy 12, ponieważ 3 dodane do siebie 4 razy daje 12.
Szkolne przybory i podręczniki kupione, dziecko zapisane na kursy językowe, a wiedza podstawowa z dziedzin ścisłych leży odłogiem? Nie przejmuj się – podpowiemy Ci, jakie wiadomości z matematyki warto znać. Wiele zadań z przedmiotów ścisłych znajdziesz do pobrania w sieci. Możesz zacząć na przykład od mnożenia, gdyż dziś wyjaśniamy, czym jest iloczyn.
Iloczyn. Symbol mnożenia
Symbol mnożenia to znak ×, który oznacza, że dwie liczby są ze sobą mnożone. Na przykład, zapis 3 × 4 oznacza, że 3 jest mnożone przez 4. Symbol × jest używany głównie w szkole podstawowej i średniej. W matematyce zaawansowanej często używa się kropki (·) lub nawiasów jako symbolu mnożenia. Na przykład, zapis 3 · 4 lub (3)(4) oznacza to samo co 3 × 4.
Iloczyn a suma
Iloczyn i suma to dwa różne działania matematyczne. Suma to wynik dodawania dwóch lub więcej liczb. Na przykład, suma 3 i 4 jest równa 7, ponieważ 3 plus 4 daje 7. Iloczyn i suma mają różne własności i nie można ich zamieniać miejscami. Na przykład, iloczyn nie zależy od kolejności czynników, ale suma zależy od kolejności składników. To znaczy, że 3 × 4 = 4 × 3, ale 3 + 4 \neq 4 + 3.
Mnożna i mnożnik — czynniki iloczynu
Mnożna i mnożnik to dwie liczby, które są ze sobą mnożone. Nazywamy je czynnikami iloczynu. Mnożna to liczba, która jest dodawana do siebie określoną liczbę razy. Mnożnik to liczba, która określa, ile razy mnożna jest dodawana do siebie. Na przykład, w iloczynie 3 × 4, mnożna to 3, a mnożnik to 4.
Własności mnożenia
Mnożenie ma kilka własności, które ułatwiają obliczanie iloczynów i upraszczanie wyrażeń algebraicznych. Oto niektóre z nich:
Prawo łączności mnożenia
Prawo łączności mnożenia mówi, że kolejność grupowania czynników nie wpływa na iloczyn. To znaczy, że a × (b × c) = (a × b) × c dla dowolnych liczb a, b i c. Na przykład, 2 × (3 × 4) = (2 × 3) × 4 = 24.
Prawo przemienności mnożenia
Prawo przemienności mnożenia mówi, że kolejność czynników nie wpływa na iloczyn. To znaczy, że a × b = b × a dla dowolnych liczb a i b. Na przykład, 2 × 3 = 3 × 2 = 6.
Prawo rozdzielności mnożenia względem dodawania
Prawo rozdzielności mnożenia względem dodawania mówi, że można rozdzielić iloczyn sumy na sumę iloczynów. To znaczy, że a × (b + c) = a × b + a × c dla dowolnych liczb a, b i c. Na przykład, 2 × (3 + 4) = 2 × 3 + 2 × 4 = 6 + 8 = 14.
Czy poprawne jest określenie „iloczyn mnożenia”?
Określenie „iloczyn mnożenia” jest niepoprawne, ponieważ jest to tautologia, czyli powtórzenie tego samego znaczenia. Iloczyn to już wynik mnożenia, więc nie trzeba dodawać słowa „mnożenia”. Poprawnym określeniem jest po prostu „iloczyn”. Na przykład, zamiast mówić „iloczyn mnożenia 3 i 4”, należy powiedzieć „iloczyn 3 i 4”.